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Attempts at cloning a quantum system result in the introduction of imperfections in the state of the copies. This
is a consequence of the no-cloning theorem, which is a fundamental law of quantum physics and the backbone
of security for quantum communications. Although perfect copies are prohibited, a quantum state may be
copied with maximal accuracy via various optimal cloning schemes. Optimal quantum cloning, which lies at
the border of the physical limit imposed by the no-signaling theorem and the Heisenberg uncertainty principle,
has been experimentally realized for low-dimensional photonic states. However, an increase in the dimension-
ality of quantum systems is greatly beneficial to quantum computation and communication protocols.
Nonetheless, no experimental demonstration of optimal cloning machines has hitherto been shown for high-
dimensional quantum systems. We perform optimal cloning of high-dimensional photonic states by means of
the symmetrization method. We show the universality of our technique by conducting cloning of numerous arbi-
trary input states and fully characterize our cloning machine by performing quantum state tomography on cloned
photons. In addition, a cloning attack on a Bennett and Brassard (BB84) quantum key distribution protocol is ex-
perimentally demonstrated to reveal the robustness of high-dimensional states in quantum cryptography.
INTRODUCTION
High-dimensional information is a promising field of quantum
information science that has matured over the last years. It is known
that, by using not only qubits but also qudits, that is, d-dimensional
quantum states, it is possible to encode more information on a single
carrier, increase noise resistance in quantum cryptography protocols
(1), and investigate fundamental properties of nature (2). Photonic
systems have been shown to be promising candidates in quantum
computation and cryptography for many proof-of-principle demon-
strations as well as for “flying” quantum carriers to distribute high-
dimensionally encoded states. Orbital angular momentum (OAM) of
light, which provides an unbounded state space, has long been recog-
nized as a potential high-dimensional degree of freedom for conducting
experiments on the foundations of quantum mechanics (3, 4), quan-
tum computation (5), and cryptography (6). The main characteristic of
photons carrying OAM is their twisted wavefront, characterized by
an expði‘φÞ phase term, where ‘ is an integer and φ is the azimuthal
coordinate (7). In the context of quantum information, OAM states
of photons have the advantage of representing quantum states be-
longing to an infinitely large, but discrete, Hilbert space (8). Finite
subspaces of dimension d can be considered as laboratory realizations of
photonic qudits. Here, we adopt the OAM degree of freedom of single
photons to achieve high-dimensional quantum cloning and perform
quantum hacking on a high-dimensional quantum communication
channel. Although perfect cloning of unknown quantum states is
forbidden (9), it is interesting to ask how similar to the initial quan-
tum state the best possible quantum clone can be. The answer is giv-
en in terms of the cloning fidelityF , which is defined as the overlap
between the initial state to be cloned and that of the cloned copies.
This figure of merit is a measure of the accuracy of a cloned copy
obtained from a specific cloner. Schemes that achieve the best pos-
sible fidelity are called optimal quantum cloning and play an impor-
tant role in quantum information (10). For instance, an optimal state
estimation yields a bounded fidelity of F est ¼ 2=ð1þ dÞ, where d is
the dimension of the quantum state (11). Optimal quantum cloning
turns out to be a more efficient way of broadcasting the quantum
state of a single system because it yields a fidelity that is always high-
er than that of optimal state estimation, which has been experimen-
tally realized for low-dimensional photonic states (12–15). Moreover,
this enhancement in fidelity grows larger with higher-dimensional
quantum states, further motivating experimental investigations of
high-dimensional quantum cloning. Hence, high-dimensional opti-
mal quantum cloning machines are of great importance whenever
quantum information is to be transmitted among multiple indivi-
duals without knowledge of the input quantum state. Here, we con-
centrate on the 1 → 2 universal optimal quantum cloning machine,
for which the optimal fidelity of the two cloned copies is given by
F clo ¼ 1=2þ 1=ð1þ dÞ, where d is the dimension of the Hilbert
space of the states that are to be cloned (16).
RESULTS
Optimal quantum cloning with OAM states of
single photons
We use the symmetrization method to realize a universal optimal
quantum cloning machine for high-dimensional OAM states (17, 18).
In this method, the quantum state that is to be cloned, namely, |y〉, is
sent to one of the input ports of a nonpolarizing beam splitter. In the
other input port, a completely mixed state of the appropriate di-
mension, given by r̂mix ¼ Id=d, is sent, where Id is the d-dimensional
identity matrix. The symmetrization method relies on the well-known
two-photon interference effect at a 50:50 beam splitter first proposed
by Hong et al. (19). When two indistinguishable single photons enter
a beam splitter, one into each input port, the photons will “bunch”
because of their bosonic nature and exit the beam splitter together
through the same output port. This principle is the essence of the sym-
metrization method for optimal quantum cloning. When both input
photons are interfering at the beam splitter, two “cloned” photons will
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jointly exit one of the output ports. We note that this cloning scheme
does not require knowledge of the input state and applies to any ar-
bitrary state. This property is a result of the “universality” of the clon-
ing machine and shows the versatility of our scheme. Each state of the
output cloned photon is represented by a reduced density matrix ob-
tained by tracing over the other photon. Because both cloned photons
are characterized by an identical cloned state, the cloner is thus said to
be “symmetric.” Hence, the symmetrization method is considered to
be a symmetric optimal universal quantum cloning machine
(UQCM). In our experiment, we implement a high-dimensional ver-
sion of this UQCM with OAM states of single photons (see Fig. 1).
We generate and measure the OAM states by manipulating the phase
front of the photons using a liquid crystal phase-only spatial light
modulator (SLM) (see the Supplementary Materials for a more
detailed experimental discussion).

Cloning fidelity
To characterize the quality of our UQCM, we use two different
approaches to evaluate the yielding cloning fidelities: measuring
the probability of successful cloning and full-state tomography of
the cloned photons. In this first series of measurements, we evalu-
ate the cloning fidelity, Fy , of a given arbitrary input state, |y〉,
from the probability of finding both output cloned photons in
Bouchard et al. Sci. Adv. 2017;3 : e1601915 3 February 2017
the state |y〉, that is, Pðjy〉; yj iÞ. This probability can be obtained
experimentally by means of coincidence measurements: Fy ¼
Pðjy〉; yj iÞ ¼ �

Nðjy〉; yj iÞ þ ∑i≠yNðjy〉; ij iÞ�=Ntot , where N(|i〉, |j〉)
represents the number of coincidence measurements between the
states |i〉 and |j〉, Ntot is the total number of coincidence measure-
ments (that is, Ntot = N(|y〉, |y〉) + 2∑i≠yN(|y〉, |i〉)), and |i〉 and |j〉
represent elements of the basis containing |y〉. The factor of 2 that
appears in the definition of Ntot is a result of the symmetric nature
of our cloning machine, where N(|i〉, |j〉) = N(|j〉, |i〉). Further, one can
obtain from normalization, Pðji〉; yj iÞ ¼ Nðji〉; jy〉Þ=Ntot, for i ≠ y.
Here, we note that the optimal cloning fidelity depends on the HOM
interference visibility V through the relation

F Vð Þ ¼ 1
2
þ 1
1þ d

2V
1þ V

� �

Dimensionality and universality of the cloning machine
Compared to a full tomographic reconstruction, this method requires
fewer measurements and thus enables us to characterize the cloning
fidelity of our cloner under a wider range of circumstances. For in-
stance, the effect of dimensionality on a UQCM is a crucial point for
any optimal cloning schemes. As mentioned previously, increasing the
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Fig. 1. Simplified sketch of the experimental design. The input quantum state |y〉 is imprinted on a single photon using an SLM-A. The single photon is subse-
quently sent to the cloning machine for optimal cloning. The cloning machine consists of a delay line (DL), to adjust the arrival time of the input photon, a second
photon that is in a completely mixed state when exiting SLM-B, and a first beam splitter (BS1). The two photons are made to arrive at the beam splitter simultaneously
using the DL. The two photons exiting one of the output ports of the first beam splitter together are separated at a second beam splitter (BS2) and are sent out of the
cloning machine. The cloned photons are then detected and characterized using detectors (D1 and D2) and SLMs (SLM-C and SLM-D), respectively. (A to C) Examples of
Hong-Ou-Mandel (HOM) coalescence curves for input photons of ‘ ¼ �1; 0; 1; respectively (top to bottom). The curve is obtained by recording the coincidences
between the output ports of BS2 for various delays of one of the input photons. Examples of enhancement peaks of R‘¼�1 ¼ 1:97 ± 0:08, R‘¼0 ¼ 2:02 ± 0:08, and
R‘¼1 ¼ 1:99 ± 0:09 are obtained experimentally, and agree with the theoretical value of Rth = 2, corresponding to a visibility of V ¼ 1.
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dimensionality of the input quantum states results in a decrease of the
cloning fidelity. This decrease in cloning fidelity can serve as an intu-
itive explanation for the superiority of high-dimensional quantum
cryptography. In our experiment, we measure the cloning fidelity of
our cloning machine for different input states belonging to the com-
putational OAM basis of various dimensions d ∈ {2, 3, 4, 5, 6, 7}. We
find near-perfect agreement of the experimentally evaluated cloning
fidelities to the theoretical predictions of the high-dimensional 1 → 2
symmetric optimal UQCM (see Fig. 2). In addition, we experimentally
verify the universality of our cloning machine by performing quantum
cloning of every state of all d + 1 OAMmutually unbiased bases (MUBs)
(see Fig. 3A) (20, 21). Once more, we find near-optimal cloning fi-
delities for all MUBs, thus demonstrating the viability and universality
of our optimal quantum cloner (see the Supplementary Materials).
Note that MUBs and their elements are playing an important role
in quantum communication and information, as basis states used in
quantum cryptographic protocols (22) and quantum state tomogra-
phy (23), for example.

Optimal cloning of a Gaussian state
As a second series of measurements for a complete characterization
of our UQCM, we fully reconstruct the high-dimensional cloned
quantum states by means of quantum state tomography. Moreover,
Bouchard et al. Sci. Adv. 2017;3 : e1601915 3 February 2017
our UQCM should be able to clone the state regardless of the input
state and its complex structure in the high-dimensional state space.
An exemplary and visually interesting high-dimensional state is the
so-called Gaussian state given by the following superposition

jyGaussi ¼ N ∑ℓ¼3
ℓ¼�3 exp½�ðℓ=2Þ2�jℓi

where N is a normalization constant. We experimentally generate
the Gaussian state of dimension d = 7 and perform full quantum
state tomography on one of the output cloned photons. The theo-
retically expected and experimentally achieved results are shown in
Fig. 3B. The cloned Gaussian state has a fidelity of 0.80 ± 0.03 with
respect to the theoretically expected cloned density matrix. Thus,
for an arbitrary complex input state |yGauss〉, the experimental clon-
ing fidelity, F ¼ 〈yGaussjr̂cljyGauss〉, of our UQCM obtained from
complete quantum state tomography can be estimated to be around
0.40 ± 0.01. In comparison to the average fidelity obtained previously
for d = 7 of 0.59 ± 0.02, which we evaluated from success probabilities,
the lower fidelity value can be explained by measurement errors and
cross-talk among spatial modes for several MUBs. For complete state
tomography, these errors have a stronger adverse effect, and a much
larger number of measurements (56 measurements in dimension 7),
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Fig. 2. Optimal cloning fidelity for various dimensions. (A) Experimental values of the cloning fidelities are shown for each d number of elements of the logical
basis, along with theoretical values, for various dimensions d. (B) The average cloning fidelities (blue dots) are plotted for various dimensions, along with probability
matricesPðji〉; yj iÞof detecting a cloned photon in any output state |i〉 of the OAM logical basis, given an input state |y〉 of the same basis. The diagonal elements of the
probability matrices correspond to the cloning fidelity of each element of the basis. The light and dark gray shaded areas correspond to fidelities not accessible by state
estimation and 1→ 2 optimal symmetric UQCM, respectively. In quantum cryptography, a more effective class of quantum hacking, namely, coherent attacks (1), yields
larger fidelities illustrated by the dim gray shaded area.
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that is, d(d + 1), are required (see the Supplementary Materials). How-
ever, both methods show that our implementation of a symmetric
UQCM can be used to clone any arbitrarily complex quantum state
up to dimension 7, without a significant deterioration of the optimal
state fidelities. Hence, cloning of high-dimensional quantum states en-
coded in the OAM degree of freedom might become a building block
of future high-dimensional quantum information applications.

Cloning attack in quantum cryptography
As a final test of the ability to clone high-dimensional quantum states,
we implement a cloning attack into a high-dimensional quantum key
distribution (QKD) scheme. In a QKD protocol, a sender (Alice) and
receiver (Bob) use quantum states to distribute a random, secret key
shared between both parties. The shared key is then used to commu-
nicate an encrypted message through a classical channel, using the
perfectly secure one-time pad protocol. The security of QKD derives
from the fact that the presence of an eavesdropper (Eve) will result in
the introduction of errors in the shared key, which can originate, for
example, from the nonperfect but optimal cloning done by the eaves-
dropper (24). Note that the dimensionality of the quantum states used
to distribute the key directly affects the cloning fidelity and thus the
amount of errors introduced by a possible cloning attack.

We first perform a high-dimensional QKD using the seminal
BB84 protocol (22), extended using OAM states of dimension d =
7. An eavesdropper with access to a high-dimensional UQCM
then performs individual attacks on the QKD channel. In our
experiment, the first MUB is given by the logical OAM basis
fj‘〉; ‘ ¼ �3; � 2; � 1; 0; 1; 2; 3g, and the second MUB is given
by the Fourier angle basis {|fi〉; i = 1, 2, 3, 4, 5, 6, 7}. Projective
measurements are shown with and without the cloning attack in
Fig. 4 (A and B), respectively. The lower fidelity due to a cloning
attack is readily visible. A visually compelling illustration of the effect
of an eavesdropper on Alice and Bob’s shared key can be given by di-
rectly using the established raw sifted key, without performing further
Bouchard et al. Sci. Adv. 2017;3 : e1601915 3 February 2017
error correction and privacy amplification, as a one-time pad to share
an encrypted message, for example, an image of their favorite optical
phenomenon. We experimentally simulate such a situation by
performing the high-dimensional BB84 protocol with and without
Eve’s attack using our UQCM. In a real-world QKD, experimental er-
rors will always be introduced in the raw key, leading to a slightly de-
teriorated image after Bob’s decryption (see Fig. 4A). However, if Eve
performs her cloning attack while Alice and Bob are trying to establish
their key, the errors increase significantly, which is then directly visible
in Bob’s decrypted image (see Fig. 4B). The quantum bit error rate
(QBER) is given by 0.16 and 0.57, without and with the cloning attack,
respectively. In the absence of an eavesdropper, the QBER is well below
the error bound for security in dimension 7, that is, Dcoh = 23.72% (1).
Thus, error correction and privacy amplification may be performed
in order for Alice and Bob to obtain a completely secure and error-
less shared key. However, in the presence of the eavesdropper, the
QBER is well above the bound in dimension 7, immediately revealing
the presence of Eve. Furthermore, the mutual information between
Alice and Bob may be calculated from

IdAB ¼ log2ðdÞ þ ð1� eNB Þ log2ð1� eNB Þ þ eNB log2
�
eNB =ðd � 1Þ�

where eNB is Bob’s error rate (25). Experimental values of 1.73 and 0.36
bits per photon were obtained for Alice and Bob’s mutual information
without and with the cloning attack, respectively. In addition, we per-
formed quantum hacking to a two-dimensional QKD protocol (BB84).
In this case, the QBER is given by 0.19 and 0.007, with and without the
cloning attack, which is well above and below the security bound in
dimension 2, that is, Dcoh(2) = 11.00%, respectively. Hence, it is clear
that high-dimensional quantum cryptography leads to higher signal
disturbance in the presence of an optimal cloning attack, resulting in
a larger tolerance to noise in the quantum channel.
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Fig. 3. Cloning fidelities for various MUBs and cloning of Gaussian states in dimension d = 7. (A) Probability Pðji〉; yj iÞ of detection of an output cloned state |i〉
given an input state |y〉, where |i〉 and |y〉 belong to a specific MUB. This set of measurement is repeated for all d + 1 MUBs (I) to (VIII), in dimension 7. The on-diagonal
elements represent the cloning fidelities for each element of a given basis. (B) Theoretical and experimental high-dimensional cloning of a Gaussian state. The cloned
fidelity is obtained by calculating the overlap of the reduced density matrix of the cloned state with the input state. The experimental reduced density matrix of the
cloned state is obtained by full quantum state tomography. The experimentally reconstructed density matrices of the Gaussian state before and after cloning are shown
along with their theoretical counterparts.
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DISCUSSION
In conclusion, we showed the feasibility of high-dimensional optimal
quantum cloning of OAM states of single photons. This scheme was
further used to perform a cloning attack to a secure quantum channel,
revealing the robustness of high-dimensional quantum cryptography
upon quantum hacking. Moreover, studying the effect of dimension-
ality and universality on optimal quantum cloning reveals its advan-
tage over optimal state estimation in quantum information schemes,
where unknown quantum states must be distributed.
MATERIALS AND METHODS
The experimental setup can be divided into three parts: a single-photon
source, a HOM interferometer, and a cloning characterization appara-
tus (see fig. S1). Single-photon pairs were generated by the process of
spontaneous parametric down-conversion at a nonlinear type I b-barium
borate crystal illuminated by a quasi-continuous wave ultraviolet laser
operating at a wavelength of 355 nm. The single photons were spatially
filtered to the fundamental Gaussian mode by coupling the generated
pairs to single-mode optical fibers, with a measured coincidence rate of
30 kHz, within a coincidence time window of 5 ns. The partner photons
were each made to illuminate an SLM, to generate the desired photonic
states, and subsequently sent at a 50:50 nonpolarizing beam splitter, one
at each input port. The path taken by the photons, generated at the non-
linear crystal to get to the beam splitter, must be equidistant for both
photons of a given pair to observe the two-photon interference effect.
This can be achieved with a precision of tens of micrometers using a
Bouchard et al. Sci. Adv. 2017;3 : e1601915 3 February 2017
programmable translational stage. Polarizers and interference filters were
inserted in the path of each photon. The photons were then made in-
distinguishable in arrival time, polarization, and frequency. On the other
hand, the spatial modes of the photons were kept as a degree of freedom
representing photonic quantum states for the UQCM. Following the
HOM interference beam splitter, the bunched photons were sent to a
second beam splitter, separating them for further coincidence detection.
Last, the separated output cloned photons were detected and character-
ized with SLMs followed by single-mode optical fibers.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/2/e1601915/DC1
Supplementary Text
fig. S1. Detailed experimental setup.
fig. S2. Experimental cloning fidelities for every element of each MUB in dimension 7.
fig. S3. Projective measurements of the input and cloned Gaussian state.
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